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The Jefferson-d’Hondt method – originally devised in 1792 by Thomas Jefferson to apportion 
seats in the U.S. House of Representatives among the states (Balinski & Young 1978), and 
later proposed by a Belgian mathematician and lawyer Victor d’Hondt (d’Hondt 1878, 1882) 
for use in parliamentary elections – is among the most popular formulas for allocating 
parliamentary seats to party lists in proportional representation electoral systems (see 
generally Colomer 2004). It is currently used to allocate all parliamentary seats in, inter alia, 
Argentina, Belgium, Bulgaria, Cape Verde, the Czech Republic, Finland, Israel, Macedonia, 
Netherlands, Paraguay, Peru, Poland, Portugal, Spain, and Turkey, as well as nearly all seats 
in Croatia. It is also employed – together with other methods – in Austria, Denmark, Iceland, 
and Japan, and has been historically used in, among others, Sweden and Germany. 

It is well known that the Jefferson-d’Hondt formula is biased in favor of larger parties (see, 
e.g., Sainte-Laguë 1910; Pólya 1918a, 1918b, 1919; Gallagher 1991; Benoit 2000; Marshall, 
Olkin & Pukelsheim 2002; van Eck et al. 2005; Pukelsheim 2013). The magnitude of such 
bias has been estimated for fixed-sized parties by Janson (2014) and for random-sized parties 
by Schuster et al. (2003), Schwingenschlögl & Drton (2004), and Drton & Schwingenschlögl 
(2005). Unfortunately, earlier research has focused exclusively on a single-district scenario, 
while most countries employing the Jefferson-d’Hondt method (with the exception of 
Netherlands and Israel) conduct allocate seats within each of the multiple electoral districts 
separately. In those countries, the political effects of the advantage provided by Jefferson-
d’Hondt to larger parties can only be assessed on the national scale – when looking at the 
composition of the legislature as a whole. 

Drawing on the article on the benefits of interparty consolidation and on the effects of 
apparentments by Bochsler (2010), as well as on the earlier works on seat bias, we have 
developed a robust formula for estimating parliamentary seat allocation solely on the basis of 
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nationwide electoral results and constant parameters of the electoral system. The expected 
number of seats for an i-th party (𝑠𝑖) is as follows: 

𝑠𝑖 ∶= 𝑝𝑖 ∙ 𝑠 + 𝑝𝑖 ∙
𝑐𝑛
2
−
𝑐
2

 (0.1) 

where 𝑝𝑖 is (effective) percentage of votes cast for that party, 𝑠 is the total number of seats, 𝑐 
is the number of electoral districts, and 𝑛 is the number of parties participating in the seat 
allocation process. 

Metaphorically, the formula can be thought to consist of three components: a basic yield – 
the number of seats that a party would be obtain under a purely proportional system (without 
any form of rounding to an integer), a contribution to the common bounty pot, and a bounty 
drawn from that pot. The key feature of the system lies in the fact that while the contribution 
to the bounty pot is equal for all parties (i.e., does not depend on the vote share), the size of 
the bounty depends on the party’s ladle – which is proportional to the vote share: larger 
parties get greater servings. Accordingly, small parties are disadvantaged, since they 
contribute more than they get back from the pot, while large parties receive a bonus. What the 
formula makes clear, however, is that the size of that bonus depends not only on their vote 
shares, but also on the size of the bounty pot – which is a function of the number of districts 
and of the number of parties. 

In addition to explaining the magnitude of the nationwide bonus for the winning parties, the 
formula has a purely practical application. All divisor methods for seat allocation require that 
district-level results be known, and since the Jefferson-d’Hondt method can be sensitive to 
small variations in vote shares, they have to be known exactly. In contrast therewith, our 
formula provides a reasonably good estimate of the nationwide seat allocation results while 
requiring only aggregate party vote shares to be known. Hence it can be used to accurately 
model seat allocation on the basis of opinion polls, exit polls, and partial election results, 
when aggregate vote shares are all that is known. 

In part I of this paper we explain how our formula can be derived from the d’Hondt method – 
and what assumptions must be made for it to work correctly. In part II, we analyze empirical 
data from six European countries to demonstrate that the formula provides a reasonably 
accurate estimate of actual seat allocation results and is quite robust against minor violations 
of its assumptions. Finally in part III, we discuss the formula’s systemic consequences for the 
ordering of national political scenes. All three parts are designed to be sufficiently 
independent of each other to permit a reader to skip immediately to the one he is interested in. 

 

I. Mathematical underpinnings 

A common formulation of the d’Hondt method of seat allocation is an algorithmic one. Let 𝑠 
be the number of seats to be allocated within a district and 𝑣𝑖 be the number of votes cast for 
the i-th party in that district. We define an m-th quotient for the i-th party as follows: 

𝑞𝑖,𝑚 ∶=
𝑣𝑖
𝑚

 (1.1) 
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Let 𝑞𝑠 be the s-th highest quotient overall (i.e., across all parties). The number of seats 
allocated to the i-th party is then defined as4: 

𝑠𝑖 ∶= max�𝑚 = 1, … , 𝑠: 𝑞𝑖,𝑚 ≥ 𝑞𝑠�. (1.2) 

 

What may be surprising is that this well-known algorithmic version actually differs from the 
original formula proposed by d’Hondt (1878, 1882), which closely tracked a 1792 proposal by 
Thomas Jefferson for apportioning House seats among the states in the U.S. Congress 
(Jefferson 1792) (though it is unclear whether d’Hondt knew of Jefferson’s work on the 
subject). Jefferson’s method called for finding such a divisor 𝐷 that if each party (or state) 
were to be allocated as many seats as 𝑣𝑖 divided by 𝐷, rounding down to the nearest integer, 

i.e., 𝑠𝑖 ∶= �𝑣𝑖
𝐷
�, no seats would remain unallocated (i.e. ∑ 𝑠𝑖𝑖 = 𝑠). D’Hondt even proposed a 

specific method for arriving at such a divisor (p. 20): let 𝑄 be the simple quota, 𝑄 ∶= 𝑣
𝑠
, where 

𝑣 is the total number of votes cast for all parties (𝑣 ∶= ∑ 𝑣𝑖𝑖 ). In the first allocation step, each 
party would be allocated the number of seats equal to its number of votes divided by 𝑄 and 

rounded down to the nearest integer, i.e., 𝑠𝑖 ∶= �𝑣𝑖
𝑄
�. After this step, the number of allocated 

seats (𝑠′) would be between 𝑠 − 𝑛 and 𝑠, where n is the number of parties taking part in the 
allocation. If no seats remained unallocated, the algorithm would end with 𝐷 = 𝑄, but 
otherwise we would compute quotients 𝑞𝑖 ∶=

𝑣𝑖
(𝑠𝑖+1)

. The k-th highest quotient (𝑘 ∶= 𝑠 − 𝑠′) 

would be the highest value of 𝐷 (and the next highest quotient would be the infimum of the 
range of possible 𝐷-s). 

 

The two methods are equivalent, i.e., guaranteed to generate identical allocation of seats: for 
each i 𝑠𝐴𝑙𝑔𝑖 = 𝑠𝐷𝑖𝑣𝑖, where 𝑠𝐴𝑙𝑔𝑖 is the number of seats awarded to the i-th party under 

formula (1.2) and 𝑠𝐷𝑖𝑣𝑖 ∶= �𝑣𝑖
𝐷
�. Let 𝐷 ∈ (𝑞𝑠+1, 𝑞𝑠]. For each i we know that: 

𝑣𝑖
𝑠𝐴𝑙𝑔𝑖 + 1

< 𝐷 ≤
𝑣𝑖
𝑠𝐴𝑙𝑔𝑖

. (1.3) 

Hence  
𝑣𝑖 < 𝐷𝑠𝐴𝑙𝑔𝑖 + 𝐷 (1.4) 

and  
𝐷𝑠𝐴𝑙𝑔𝑖 ≤ 𝑣𝑖; (1.5) 

therefore  
𝐷𝑠𝐴𝑙𝑔𝑖 ≤ 𝑣𝑖 < 𝐷𝑠𝐴𝑙𝑔𝑖 + 𝐷. (1.6) 

By dividing both sides by 𝐷 we obtain  

                                                 
4 If  max�𝑗 ∈ � : 𝑞𝑠+𝑗 = 𝑞𝑠� > 0, the procedure described herein will allocate more than s seats. This condition is 
equivalent to an election tie and has to be resolved by reference to some rule external to the system being 
described. From the point of the Jefferson-d’Hondt method, any such resolution is arbitrary, and such cases will 
therefore be ignored in our analysis. They are in any case extremely rare in real-life elections. 
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𝑠𝐴𝑙𝑔𝑖 ≤
𝑣𝑖
𝐷

< 𝑠𝐴𝑙𝑔𝑖 + 1 (1.7) 

which is equivalent to  

𝑠𝐴𝑙𝑔𝑖 = �
𝑣𝑖
𝐷
� (1.8) 

q.e.d.  

 

Unfortunately, the divisor formula still does not permit a party’s seat allocation to be 
estimated without full knowledge of vote shares of the other parties. A solution to this 
problem has been proposed by Bochsler (2010), who was drawing on earlier works by Gfeller 
(1890) and Happacher and Pukelsheim (1996). Let 𝑚 ∶= 𝑣

𝐷
 (it should be noted that m need not 

be an integer). Then 

𝑠𝑖 = �
𝑣𝑖
𝑣
𝑚
� = �

𝑣𝑖𝑚
𝑣
� = ⌊𝑝𝑖𝑚⌋, (1.9) 

where 𝑝𝑖 is the fraction of total votes cast for the i-th party (the “vote share”). Let us denote 
the remaining fractional part of 𝑝𝑖𝑚 as 𝑟𝑖 ∶= 𝑝𝑖𝑚 − ⌊𝑝𝑖𝑚⌋. We know that allocated seats sum 
up to s, so 

𝑠 = �𝑠𝑖
𝑖

= �(𝑝𝑖𝑚 − 𝑥𝑖)
𝑖

= 𝑚�𝑝𝑖
𝑖

−�𝑥𝑖
𝑖

= 𝑚 −�𝑟𝑖
𝑖

. (1.10) 

At this point Bochsler assumes that the remaining fractional parts are drawn at random from a 
continuous uniform distribution 𝑈(0,1)5. In fact, this assumption goes further than necessary, 
as he only uses one consequence thereof: that  

𝐸(𝑟) =
1
2

 , (1.11) 

permitting him to obtain value of m from (1.10): 

𝑚 = 𝑠 +
𝑛
2

 . (1.12) 

By substituting (1.12) for m in (1.9) we obtain 

𝑠𝑖 = �𝑝𝑖 �𝑠 +
𝑛
2
�� = 𝑝𝑖 �𝑠 +

𝑛
2
� − 𝑟𝑖 . (1.13) 

But since 𝐸(𝑟) = 1
2
, the expected number of seats for the i-th party can be expressed as: 

𝐸(𝑠𝑖) = 𝑝𝑖 �𝑠 +
𝑛
2
� − 𝐸(𝑥𝑖) = 𝑝𝑖 �𝑠 +

𝑛
2
� −

1
2

 . (1.14) 

It is notable that an identical formula has been obtained by Janson (2014), but in a very 
different context. While Bochsler treated the number of seats as constant and the distribution 
of votes across competing parties (with the exception of the i-th party) as random, Janson 

                                                 
5 Such an assumption has been made by many authors treating of apportionment methods, beginning with 
Jefferson himself: “The probability is that the fractions will generally descend gradually from 29,999 [30,000 
being the proposed quota] to 1” (Jefferson 1792). 
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analyzed a case with a constant distribution of votes, but random number of seats (or, to be 
exact, an asymptotic case with the number of seats drawn from a uniform distribution 𝑈(1,𝑛) 
for 𝑛 → ∞). 

 

Unfortunately, the key assumption of the Bochsler formula – uniform distribution of 
remaining fractional parts – is incorrect. The distribution in question will be uniform if and 
only if the party vote shares themselves are distributed uniformly. As noted above, however, 
the uniformity assumption is not necessary for the Bochsler formula to work – it suffices that 
𝐸(𝑟𝑖) = 1

2
, and we will proceed to demonstrate that under ordinary circumstances this 

assumption is satisfied (though in most cases asymptotically rather than exactly). 

Let 𝑚 ∶= 𝑣
𝐷

 . It will be noted that the remaining fractional part of 𝑝𝑖𝑚 (𝑟𝑖) will be equal to 𝑥 if 

and only if  𝑝𝑖 = 𝑗+𝑥
𝑚

  for some 𝑗 = 0, … , ⌊𝑚⌋. Therefore, 𝑟𝑖 will be distributed according to the 
following density function: 

𝑓𝑋(𝑥) ∶=
1
𝑠
�𝑓𝑖 �

𝑘 + 𝑥
𝑚 �

⌊𝑚⌋

𝑘=0

, (1.15) 

where 𝑓𝑖(𝑥) is the probability density function of the vote share distribution for the i-th party. 
Since expected value of a continuous probability distribution is equal to ∫ 𝑥𝑓(𝑥)𝑑𝑥∞

−∞ , and 
since each 𝑓𝑖(𝑥) is nonzero only in the [0,1] range, expected value of the remaining fractional 
part will be: 

𝐸(𝑟𝑖) = �
𝑥
𝑚
�𝑓𝑖 �

𝑘 + 𝑥
𝑚 �

⌊𝑚⌋

𝑘=0

𝑑𝑥.
1

0

 (1.16) 

By substituting 𝑦 = 𝑘+𝑥
𝑚

 we obtain: 

𝐸(𝑟𝑖) = ��
𝑚𝑦 − 𝑘
𝑚

𝑓(𝑦) 𝑚 𝑑𝑦

𝑘+1
𝑚

𝑘
𝑚

⌊𝑚⌋

𝑘=0

 (1.17) 

and  

𝐸(𝑟𝑖) = 𝑚� 𝑦𝑓𝑖(𝑦)𝑑𝑦
𝑚

0
−� 𝑘� 𝑓𝑖(𝑦)𝑑𝑦

𝑘+1
𝑚

𝑘
𝑚

⌊𝑚⌋

𝑘=1
. (1.18) 

But ∫ 𝑦𝑓𝑖(𝑦)𝑑𝑦𝑚
0  is the expected vote share of the i-th party (which we will denote as 

𝜇𝑖). Therefore 
 

𝐸(𝑟𝑖) = 𝑚𝜇𝑖 −� 𝑘� 𝑓𝑖(𝑦)𝑑𝑦
𝑘+1
𝑚

𝑘
𝑚

⌊𝑚⌋

𝑘=1
. (1.19) 

∫ 𝑓𝑖(𝑦)𝑑𝑦
𝑘+1
𝑚

𝑘
𝑚

 is 𝐹𝑖 �
𝑘
𝑚
� − 𝐹𝑖 �

𝑘+1
𝑚
�, so we transform the equation:  
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𝐸(𝑟𝑖) = 𝑚𝜇𝑖 −� 𝑘�𝐹𝑖 �
𝑘 + 1
𝑚 � − 𝐹𝑖 �

𝑘
𝑚��

⌊𝑚⌋

𝑘=1
 (1.20) 

  

𝐸(𝑟𝑖) = 𝑚𝜇𝑖 −� 𝑘�𝐹𝑖 �
𝑘 + 1
𝑚 � − 𝐹𝑖 �

𝑘
𝑚��

⌊𝑚⌋−1

𝑘=1
− ⌊𝑚⌋�𝐹𝑖 �

⌊𝑚⌋ + 1
𝑚 �− 𝐹𝑖 �

⌊𝑚⌋
𝑚 �� (1.21) 

  

𝐸(𝑟𝑖) = 𝑚𝜇𝑖 − �−�𝐹𝑖 �
𝑘
𝑚�

⌊𝑚⌋

𝑘=1

+ ⌊𝑚⌋𝐹𝑖 �
⌊𝑚⌋
𝑚
�� − ⌊𝑚⌋ �1 − 𝐹𝑖 �

⌊𝑚⌋
𝑚
�� (1.22) 

  

𝐸(𝑟𝑖) = 𝑚𝜇𝑖 + �𝐹𝑖 �
𝑘
𝑚�

⌊𝑚⌋

𝑘=1

− ⌊𝑚⌋𝐹𝑖 �
⌊𝑚⌋
𝑚
� − ⌊𝑚⌋ + ⌊𝑚⌋𝐹𝑖 �

⌊𝑚⌋
𝑚
�. (1.23) 

And finally we obtain a (relatively) simple formula for expected value of 𝑟𝑖: 

𝐸(𝑟𝑖) = 𝑚𝜇𝑖 − ⌊𝑚⌋ + �𝐹𝑖 �
𝑘
𝑚�

⌊𝑚⌋

𝑘=1

. (1.24) 

There are several ways to demonstrate that 

lim
𝑚→∞

𝐸(𝑟𝑖) =
1
2

 . (1.25) 

For instance, it can be noted that 

1
𝑚
�𝑓𝑖 �

𝑘 + 𝑥
𝑚 �

⌊𝑚⌋

𝑘=0

 (1.26) 

is a Riemannian sum and, consequently, that 

1
𝑚
�𝑓𝑖 �

𝑘 + 𝑥
𝑚 �

⌊𝑚⌋

𝑘=0

~�𝑓𝑖(𝑥) 𝑑𝑥
1

0

 (1.27) 

as m approaches ∞. Since 𝑓𝑖 is a density function on [0,1], it integrates to 1. Therefore 

lim
𝑚→∞

𝐸(𝑟𝑖) = �𝑥 𝑑𝑥
1

0

=
1
2

 . (1.28) 

Owens (2014) proves that as long as 𝑓𝑖 is differentiable and its first derivative is integrable, 

for any 𝑥 ∈ [0,1] error term Δ𝑛 = ∫ 𝑓𝑖(𝑥)𝑑𝑥1
0 − 1

𝑛
∑ 𝑓𝑖 �

𝑘−𝑥
𝑛
�𝑛

𝑘=1  is asymptotically equivalent 

to �𝑥 − 1
2
� 𝑓𝑖(1)−𝑓𝑖(0)

𝑛
. Therefore, as long as the distribution of party vote shares is not highly 

asymmetric at the ends of the [0,1] range6 or its mean is close to 1
2
 (assumption A1), the 

                                                 
6 Running kernel density estimation on empirical vote share distributions for parties in the European countries 
using proportional representation systems in lower house elections indicates that party vote share distribution is 
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expected value of the remaining fractional share will converge to 1
2
 fairly quickly – for 

instance, more rapidly than 1
𝑛
 converges to 0. 

If A1 is not satisfied and error term is not asymptotically equivalent to 0, we can write 

lim
𝑚→∞

𝐸(𝑟𝑖) = �𝑥 �1 + �𝑥 −
1
2�
𝑓𝑖(1) − 𝑓𝑖(0)

𝑚
�  𝑑𝑥

1

0

= 

�  �𝑥2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑚
−
𝑥
2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑚
+ 𝑥�  𝑑𝑥

1

0

. 

(1.29) 

Let  

𝐴(𝑥) = ��𝑥2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑚
−
𝑥
2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑚
+ 𝑥�  𝑑𝑥 = 

𝑓𝑖(1) − 𝑓𝑖(0)
3𝑚

𝑥3 −
𝑓𝑖(1) − 𝑓𝑖(0)

4𝑚
𝑥2 +

1
2
𝑥2 . 

(1.30) 

By applying the fundamental theorem of calculus we arrive at  

�  �𝑥2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑛
−
𝑥
2
𝑓𝑖(1) − 𝑓𝑖(0)

𝑛
+ 𝑥�  𝑑𝑥

1

0

= 𝐴(1) − 𝐴(0) = 

𝑓𝑖(1) − 𝑓𝑖(0)
3𝑚

−
𝑓𝑖(1) − 𝑓𝑖(0)

4𝑚
+

1
2
− 0 = 

1
2

+
𝑓𝑖(1) − 𝑓𝑖(0)

12𝑚
, 

(1.31) 

leading to a party-specific error estimate of  

𝑒𝑟𝑟𝑖 = 𝑝𝑖 �
𝑛
2
−��

1
2

+
𝑓𝑖(1) − 𝑓𝑖(0)

12𝑚
�

𝑖

� −
1
2

+
1
2

+
𝑓𝑖(1) − 𝑓𝑖(0)

12𝑚
= 

𝑝𝑖 �−��
𝑓𝑖(1) − 𝑓𝑖(0)

12𝑚
�

𝑖

� +
𝑓𝑖(1) − 𝑓𝑖(0)

12𝑚
. 

(1.32) 

 

While the Bochsler-Janson formula enables us to estimate single-district seat numbers on the 
basis of an approximate, rather than exact, distribution of votes across parties, it still requires 
that the distribution of votes across districts be known (excepting, of course, the degenerate 
case of a single-district electoral system). Yet this difficulty can also be surmounted, as long 
as certain additional assumptions about such distribution are made. 

Let 𝑣𝑖𝑘 and 𝑠𝑖𝑘 be, respectively, the number of votes received and the number of seats awarded 
for the i-th party in the k-th electoral district. Let 𝑣𝑖 = ∑ 𝑣𝑖𝑘𝑘  and 𝑠𝑖 = ∑ 𝑠𝑖𝑘𝑘  be, respectively, 
the nationwide vote and seat numbers for the i-th party, and let 𝑣𝑘 = ∑ 𝑣𝑖𝑘𝑖  and 𝑠𝑘 = ∑ 𝑠𝑖𝑘𝑖  be, 

                                                                                                                                                         
usually close to a truncated Gaussian distribution and in most cases the value of the density function is 0 or very 
close 0 at both ends of the [0,1] range. 
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respectively, the district vote and seat totals for the k-th district. Finally, let 𝑣 = ∑ 𝑣𝑖𝑖 = ∑ 𝑣𝑘𝑘  
and 𝑠 = ∑ 𝑠𝑖𝑖 = ∑ 𝑠𝑘𝑘  be, respectively, nationwide vote and seat totals. We assume the 
number of parties (n) to be constant across districts (assumption A2). In this case: 

𝑠𝑖 = ��
𝑣𝑖𝑘

𝑣𝑘
∙ �𝑠𝑘 +

𝑛
2
� −

1
2
�

𝑘

= 

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘 +

𝑣𝑖𝑘

𝑣𝑘
∙
𝑛
2
� −

𝑐
2

𝑘

= 

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘�

𝑘

+ ��
𝑣𝑖𝑘

𝑣𝑘
∙
𝑛
2
�

𝑘

−
𝑐
2

 . 

(1.33) 

For the easiest case, where district size (in votes as well as in seats) and distribution of party 
vote shares are constant across districts (i.e. for each k  𝑣𝑘 = 𝑣1 = 𝑣

𝑐
 and 𝑠𝑘 = 𝑠1 = 𝑠

𝑐
, and for 

each k, i  𝑣𝑖𝑘 = 𝑣𝑖1 = 𝑣𝑖
𝑐

), we can simply write 

𝑠𝑖 = ��
𝑣𝑖
𝑐
𝑣
𝑐
∙
𝑠
𝑐�

𝑘

+ ��
𝑣𝑖
𝑐
𝑣
𝑐
∙
𝑛
2�

𝑘

−
𝑐
2

= 

𝑐 �
𝑣𝑖
𝑣
∙
𝑠
𝑐
� + 𝑐 �

𝑣𝑖
𝑣
∙
𝑛
2
� −

𝑐
2

= 

𝑝𝑖𝑠 + 𝑝𝑖
𝑐𝑛
2
−
𝑐
2

 , 

(1.34) 

which is our formula (0.1). Of course, those three assumptions are highly unrealistic and have 
not been exactly satisfied in any election. However, let us consider whether the formula might 
still work in other cases. We note that 

𝑝𝑖𝑠 + 𝑝𝑖
𝑐𝑛
2
−
𝑐
2

= 

∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙�𝑠𝑘
𝑘

+
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙
𝑐𝑛
2
−
𝑐
2

 . 
(1.35) 

The two formulas will be equal if and only if: 

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘 +

𝑣𝑖𝑘

𝑣𝑘
∙
𝑛
2
� −

𝑐
2

𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙�𝑠𝑘
𝑘

+
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙
𝑐𝑛
2
−
𝑐
2

 . (1.36) 

This condition will be satisfied if: 

��
𝑣𝑖𝑘

𝑣𝑘
∙
𝑛
2
�

𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙
𝑐𝑛
2

 (1.37) 

and  

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘�

𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙�𝑠𝑘
𝑘

 . (1.38) 
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(Or if neither (1.37) nor (1.38) holds, but the differences cancel each other out.)  

 

Let us first take up condition (1.37): 

��
𝑣𝑖𝑘

𝑣𝑘
∙
𝑛
2
�

𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙
𝑐𝑛
2

 (1.39) 

�
𝑣𝑖𝑘

𝑣𝑘
𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙ 𝑐 (1.40) 

1
𝑐
∙�𝑝𝑖𝑘

𝑘

=
∑ �𝑣𝑘 ∙ 𝑝𝑖𝑘�𝑘

∑ 𝑣𝑘𝑘
 (1.41) 

1
𝑐
∙�𝑝𝑖𝑘

𝑘

�𝑣𝑘
𝑘

= ��𝑣𝑘 ∙ 𝑝𝑖𝑘�
𝑘

 (1.42) 

— which is true if party vote shares (𝑝𝑖𝑘) are not correlated with district magnitude 
(𝑣𝑘) in terms of the total number of votes actually cast (not in terms of the 
number of eligible voters) 

A3 

 

Condition (1.38) is somewhat more complex: 

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘�

𝑘

=
∑ 𝑣𝑖𝑘𝑘
∑ 𝑣𝑘𝑘

∙�𝑠𝑘
𝑘

 (1.43) 

Relying on (1.42), we know that:  

�𝑣𝑖𝑘

𝑘

= ��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑣𝑘�

𝑘

=
1
𝑐
∙�

𝑣𝑖𝑘

𝑣𝑘
𝑘

�𝑣𝑘
𝑘

 . (1.44) 

Hence  

��
𝑣𝑖𝑘

𝑣𝑘
∙ 𝑠𝑘�

𝑘

=
1
𝑐 ∙ ∑

𝑣𝑖𝑘
𝑣𝑘𝑘 ∑ 𝑣𝑘𝑘

∑ 𝑣𝑘𝑘
∙�𝑠𝑘

𝑘

 (1.45) 

and  

��𝑝𝑖𝑘 ∙ 𝑠𝑘�
𝑘

=
1
𝑐
∙�𝑝𝑖𝑘

𝑘

∙�𝑠𝑘
𝑘

 (1.46) 

— which is true if party vote shares (𝑝𝑖𝑘) are not correlated with district magnitude 
(𝑠𝑘) in terms of the total number of seats to be allocated A4 

 

If assumptions assumption A2, A3 and A4 are satisfied, by aggregating Bochsler-Janson 
single-district formulas we arrive at formula (0.1), q.e.d. 

 



~ 10 ~ 
 

Before we proceed to the empirical test of the formula (0.1), one additional (albeit somewhat 
extended) remark is in order. We have been hitherto treating the number of parties n as 
constant. In reality, however, it depends on vote shares due to existence of statutory and 
natural election thresholds. Statutory thresholds are easy to account for: since parties that fall 
below them are ignored in the seat allocation process, we simply eliminate them from the 
electoral results data set before starting any processing. Natural thresholds call for more 
sophisticated treatment, since they cannot be fixed at arbitrary level without knowing actual 
election results. Yet we cannot ignore them, since not only applying formula (0.1) for sub-
threshold parties can yield negative seat numbers (which are obviously incorrect), but 
including them in n tends to distort results for supra-threshold parties as well. 

To avoid this kind of error, we use an iterative algorithm for determining effective n (the 
number of relevant parties) and for identifying supra-threshold parties. The basic strategy is as 
follows: we sort the parties degressively according to their total number of votes (𝑣𝑖). We then 
start with only one party in the model (the largest one) and continue to add parties, according 
to the sort order, until we encounter the first party with negative seat number. At that point, 
we eliminate such party and end the algorithm. 

Let N be the whole number of parties (including sub-threshold ones, but excluding those 
eliminated by the statutory threshold) that participate in seat allocation. In such case, we can 
define n as follows: 

𝑛 = max �𝑛 ∈ (1, … ,𝑁):𝑛 >
1
𝑝𝑛

− 2�̅�� (1.47) 

where �̅� ∶= 𝑠
𝑐
 is the mean district size. Of course, since ∑ 𝑝𝑖𝑛

𝑖=1  must be equal 1, we have to 
renormalize vote totals: 

𝑣 = �𝑣𝑖

𝑛

𝑖=1

 . (1.48) 

We then arrive at the full formula: 

𝑛 = max �𝑛 ∈ (1, … ,𝑁):𝑛 >
∑ 𝑣𝑖𝑛
𝑖=1

𝑣𝑛
− 2�̅�� = 

max �𝑛 ∈ (1, … ,𝑁):𝑛 > �
𝑣𝑖
𝑣𝑛

𝑛

𝑖=1

− 2�̅��. 

 

(1.49) 

For our algorithm to be correct, the condition 𝑛 > ∑ 𝑣𝑖
𝑣𝑛

𝑛
𝑖=1 − 2�̅� has to be monotonous. We 

can transform it into 

2�̅� > �
𝑣𝑖
𝑣𝑛

𝑛

𝑖=1
− 𝑛, (1.50) 

which is equivalent to  

2�̅� > �
𝑣𝑖 − 𝑣𝑛
𝑣𝑛

𝑛

𝑖=1
. (1.51) 

Theorem: 
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2�̅� > �
𝑣𝑖 − 𝑣𝑛
𝑣𝑛

𝑛

𝑖=1
   implies   2�̅� > �

𝑣𝑖 − 𝑣𝑛+1
𝑣𝑛+1

𝑛+1

𝑖=1
 (1.52) 

Proof: 

�
𝑣𝑖 − 𝑣𝑛
𝑣𝑛

𝑛

𝑖=1
< �

𝑣𝑖 − 𝑣𝑛+1
𝑣𝑛+1

𝑛+1

𝑖=1
 (1.53) 

�
𝑣𝑖
𝑣𝑛

𝑛

𝑖=1
− 𝑛 < �

𝑣𝑖
𝑣𝑛+1

𝑛+1

𝑖=1
− (𝑛 + 1) (1.54) 

�� 𝑣𝑖
𝑛−1

𝑖=1
� 𝑣𝑛+1 − 𝑛𝑣𝑛𝑣𝑛+1 < �� 𝑣𝑖

𝑛

𝑖=1
� 𝑣𝑛 − (𝑛 + 1)𝑣𝑛𝑣𝑛+1 (1.55) 

�� 𝑣𝑖
𝑛−1

𝑖=1
� 𝑣𝑛+1 < �� 𝑣𝑖

𝑛

𝑖=1
� 𝑣𝑛 − 𝑣𝑛𝑣𝑛+1 (1.56) 

�� 𝑣𝑖
𝑛

𝑖=1
� 𝑣𝑛+1 < �� 𝑣𝑖

𝑛

𝑖=1
� 𝑣𝑛 (1.57) 

which is true, as parties are sorted degressively by 𝑣𝑖 .  
We can further note that if 

𝑣𝑛
∑ 𝑣𝑖𝑛
𝑖=1

>
1

2�̅�
 (1.58) 

the condition 𝑛 > ∑ 𝑣𝑖
𝑣𝑛

𝑛
𝑖=1 − 2�̅� will always be satisfied, meaning that we can easily start the 

algorithm with the first party that does not satisfy equation (1.58). In addition, 

𝛿 =
1

2�̅� + 𝑛
 (1.59) 

is our estimate of the natural threshold. We can demonstrate that this in accord with earlier 
works on the subject by Palomares and Ramirez (2003), who estimated the threshold of 
exclusion to be 1

𝑠+1
 and the threshold of inclusion to be 1

𝑠+𝑛−1
 . We can demonstrate that 

1
2𝑠 + 𝑛

<
1

𝑠 + 1
 (1.60) 

and that, even though sub-threshold parties are not automatically excluded from our 
calculations, since  

1
2𝑠 + 𝑛

<
1

𝑠 + 𝑛 − 1
 (1.61) 

they never obtain more than ½ seat. Proof: let  
1

𝑠 + 𝑛 − 1
> 𝑝 >

1
𝑛 + 2𝑠

 (1.62) 

Since 𝑠𝑖 = 𝑝 �𝑠 + 𝑛
2
� − 1

2
 and 𝑝 > 1

𝑛+2𝑠
, we know that  

𝑠𝑖 <
𝑠 + 𝑛

2
𝑠 + 𝑛 − 1

−
1
2

 . (1.63) 

For each 𝑛 ≥ 2  

𝑠 + 𝑛
2

𝑠 + 𝑛 − 1
≤ 1. (1.64) 
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(Proof: 𝑛 − 𝑛
2
≥ 1;       𝑛 − 1 ≥ 𝑛

2
 ;      𝑠 + 𝑛 − 1 ≥ 𝑠 + 𝑛

2
 )  

This means that  

𝑠𝑖 <
𝑠 + 𝑛

2
𝑠 + 𝑛 − 1

−
1
2
≤

1
2

. (1.65) 

II. Empirical test 

In the foregoing part, we have made four assumptions which are necessary for formula (0.1) 
to work correctly: 

A1 
for each party, expected value of the remaining fractional shares that are 
discarded when dividing the number of votes by Jefferson-d’Hondt divisor is ½  

assumption 
A2 

the number of relevant parties (i.e. parties that reach both the statutory 
threshold, if any, and the natural threshold) is constant across districts 

A3 
party vote shares (party votes / total votes) are not correlated with district 
magnitude measured by the total number of (effective) votes7 cast 

A4 
party vote shares (party votes / total votes) are not correlated with district 
magnitude measured by the total number of seats 

While most if not all of these assumptions are intuitive and we would expect them to be 
approximately satisfied in real-life elections, we still have to test them against empirical data. 
We would also like to test the formula itself, in order to determine whether it is robust against 
minor violations of the assumptions (which have to be expected). 

As noted above, Jefferson-d’Hondt method is used in numerous electoral systems around the 
world. Due to data availability limitations, time and length constraints, and preliminary nature 
of this paper, we restrict ourselves herein to a limited subset of cases that meet the following 
criteria: 

1) National lower house elections (being the most politically salient)… 
2) … in EU member states… 
3) … and national (rather than fragmented) party systems… 
4) … that use Jefferson-d’Hondt method (without any adjustments) to allocate all seats… 
5) … and continue to apply it as of June 2016. 

There are six countries that satisfy those criteria exactly: Spain, Portugal, Finland, 
Netherlands, Poland, and the Czech Republic. We also include Croatia, although it does not 
fully satisfy criterion (5): it uses FPTP method to allocate seats in special districts set aside for 
ethnic minorities. However, the number of those minority seats is relatively small in 
comparison to the size of the Croatian parliament (6 out of ca. 150) and elections for those 
seats are held at different dates, so we just omit them from our calculations. We do not include 
Belgium, given its use of multitier elections in the Brussels region, but also given its absence 
of a nationwide party system (our formula would have to be applied separately for Flanders 
and Wallonia). We also do not include Bulgaria, since its seat allocation outcomes do not fully 
                                                 
7 By effective votes we mean only those votes that have been cast for a relevant party. 



~ 13 ~ 
 

match results obtained by using the Jefferson-d’Hondt algorithm (perhaps due to the fact that 
available data sets do not include information about the use of apparentments). For Finland, 
we omit elections prior to 2003 for the same reason – lack of full information about 
apparentment composition. 

For elections before 2007, we have obtained our data from the Global Election Database. For 
subsequent elections, we have used the Constituency-Level Elections Archive and web sites 
of the respective national electoral authorities. 

Table 1 sets forth the general electoral system parameters of the six countries discussed 
above: 

Country 
Earliest 

included 
election 

Number of 
elections 

Number of 
seats 

Number of 
districts 

Avg. number of 
relevant parties 

Croatia 2000 5 143-146 11 6 
+ 1 regional 

Czech Republic 2002 4 200 14 5 

Finland 2003 4 200 15 7 
+ 1 regional 

Netherlands 1948 20 100-150 1 10 
Poland 2005 4 460 41 5 
Portugal 1975 15 226-259 20-22 4.5 

Spain 1977 12 350 52 4 
+ 5 regional 

Table 1. General parameters of electoral systems of the test country data set 

What appears troubling is that in three of those seven countries there are regional parties that 
manage to win parliamentary seats while running only in a limited subset of electoral districts 
(such as the Convergence and Union (CiU), the Republican Left of Catalonia (ERC), and the 
Basque Nationalist Party (EAJ / PNV) in Spain, the Swedish People’s Party (SFP / RKP) in 
Finland, and the Croatian Democratic Alliance of Slavonia and Baranja (HDSSB) in 
Croatia)8. Such parties violate our assumption A2, since the number of relevant parties is no 
longer constant. This problem can be solved by introducing a regional correction. 

We define a region to be a set of electoral district that is defined by a presence of one or more 
regional parties. To be recognized by us as regional, a party has to register candidate lists in 
all districts within some region and may not register candidate lists anywhere outside that 
region. No two regions are permitted to overlap. All districts which have no regional parties 
constitute the “national region” (𝑅0). In formal terms, a set of all regions 𝑅 = �𝑅0,  𝑅1,  … � is 
a partition on the set of all electoral districts (D). 

All those restrictions on the definition on a region ensure: 

• that within any region r, the number of parties (𝑛𝑟) remains constant, —and 
• that no regional party runs in more than one region. 

                                                 
8 It is interesting to note that the three multidistrict countries that do not have any regional parties – Portugal, 
Poland, and the Czech Republic – are among the most homogenous countries in Europe in terms of ethnic and 
cultural composition of the population. Netherlands, of course, has only one electoral district. 
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Since region boundaries are known before the election, we can describe each region by such 
parameters as: the number of districts (𝑐𝑟) (which can be one); the total number of seats (𝑠𝑟); 
and the total number of votes (𝑣𝑟)9. Also, since each regional party runs only in one region, its 

national vote share can be easily translated into regional vote share (𝑝𝑖𝑟 = 𝑝𝑖
𝑣𝑟

𝑣
). At this point, 

we have all information we need to estimate the number of seats allocated for each regional 
party, using a modified version of formula (0.1): 

𝑠𝑖 ∶= 𝑝𝑖𝑟 ∙ 𝑠𝑟 + 𝑝𝑖 ∙
𝑐𝑟𝑛𝑟

2
−
𝑐𝑟

2
 . (2.1) 

After seat allocations have been computed for all regional parties in all regions, we redefine s 
to be the total number of seats excepting the seats already allocated to regional parties and 
allocate them using the standard form of formula (0.1). At this stage, only national parties are 
taken into account. As we demonstrate below, the regional correction reduces the aggregate 
error of the formula to levels comparable to those of countries with no regional parties. 

 

Let us now test the remaining three assumptions. For each assumption, we have computed a 
measure of deviation, defined as: 

𝑉𝐴1,𝑖 = ��̅�𝑖 −
1
2
� (2.2) 

(where �̅�𝚤�  is the empirical mean remaining fractional part for the i-th party)  
for assumption A1,  

𝑉𝐴3,𝑖 = �Corr�𝑝𝑖𝑘, 𝑣𝑘�� (2.3) 

(where Corr(𝑥,𝑦) is Pearson correlation coefficient for x and y)  
for assumption A3, and  

𝑉𝐴4,𝑖 = �Corr�𝑝𝑖𝑘, 𝑠𝑘�� (2.4) 

for assumption A4.  

If all three assumptions are satisfied for the i-th political parties, all three measures of 
deviation shall be equal to 0. 

Since the assumptions are party-specific, for each election and assumption we provide two 
data points per assumption: maximum measure of deviation and median measure of deviation. 
In all cases, we only consider relevant parties. For regional parties, measures of deviation 
apply only to those districts in which they have fielded candidates. 

country year n 10 
deviation from A1 deviation from A2 deviation from A3 
max median max median max median 

Croatia 2000 4 0.356 0.082 0.943 0.838 0.957 0.746 
Croatia 2003 7 0.467 0.110 0.776 0.337 0.846 0.409 

                                                 
9 Strictly speaking, 𝑣𝑟 is not known before the election, but can be estimated on the basis of the region’s number 
of eligible voters and historical differences in voter turnout. 
10 Without regional parties. 
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Czech Republic 2002 4 0.123 0.071 0.307 0.131 0.313 0.126 
Czech Republic 2006 5 0.197 0.059 0.299 0.090 0.319 0.113 
Czech Republic 2010 5 0.148 0.031 0.426 0.410 0.438 0.415 
Czech Republic 2013 7 0.149 0.085 0.467 0.282 0.516 0.324 

Finland 2003 7 0.153 0.027 0.672 0.404 0.634 0.350 
Finland 2007 8 0.148 0.083 0.682 0.446 0.647 0.407 
Finland 2011 8 0.326 0.074 0.787 0.517 0.746 0.446 
Finland 2015 8 0.234 0.057 0.686 0.408 0.633 0.378 

Netherlands 1948 9 0.500 0.308 N/A N/A N/A N/A 
Netherlands 1952 9 0.500 0.084 N/A N/A N/A N/A 
Netherlands 1956 10 0.500 0.197 N/A N/A N/A N/A 
Netherlands 1959 11 0.500 0.363 N/A N/A N/A N/A 
Netherlands 1963 13 0.500 0.197 N/A N/A N/A N/A 
Netherlands 1967 14 0.500 0.327 N/A N/A N/A N/A 
Netherlands 1971 19 0.500 0.168 N/A N/A N/A N/A 
Netherlands 1972 16 0.500 0.186 N/A N/A N/A N/A 
Netherlands 1977 14 0.500 0.174 N/A N/A N/A N/A 
Netherlands 1981 13 0.500 0.241 N/A N/A N/A N/A 
Netherlands 1982 14 0.500 0.201 N/A N/A N/A N/A 
Netherlands 1986 12 0.500 0.260 N/A N/A N/A N/A 
Netherlands 1989 11 0.500 0.089 N/A N/A N/A N/A 
Netherlands 1994 13 0.500 0.283 N/A N/A N/A N/A 
Netherlands 1998 13 0.500 0.331 N/A N/A N/A N/A 
Netherlands 2002 11 0.500 0.247 N/A N/A N/A N/A 
Netherlands 2003 11 0.500 0.275 N/A N/A N/A N/A 
Netherlands 2006 11 0.500 0.356 N/A N/A N/A N/A 
Netherlands 2010 10 0.500 0.317 N/A N/A N/A N/A 
Netherlands 2012 11 0.500 0.333 N/A N/A N/A N/A 

Poland 2005 6 0.093 0.028 0.447 0.217 0.231 0.082 
Poland 2007 4 0.061 0.044 0.406 0.227 0.121 0.086 
Poland 2011 5 0.090 0.037 0.281 0.215 0.189 0.108 
Poland 2015 5 0.104 0.041 0.398 0.268 0.227 0.056 

Portugal 1975 5 0.105 0.057 0.390 0.156 0.402 0.152 
Portugal 1976 4 0.107 0.053 0.329 0.229 0.319 0.233 
Portugal 1979 3 0.059 0.058 0.206 0.116 0.128 0.122 
Portugal 1980 3 0.046 0.027 0.262 0.250 0.268 0.155 
Portugal 1983 4 0.094 0.056 0.303 0.190 0.305 0.184 
Portugal 1985 5 0.075 0.046 0.407 0.092 0.399 0.085 
Portugal 1987 5 0.179 0.047 0.239 0.152 0.226 0.157 
Portugal 1991 4 0.135 0.054 0.295 0.118 0.275 0.119 
Portugal 1995 4 0.143 0.085 0.125 0.101 0.124 0.099 
Portugal 1999 4 0.107 0.076 0.124 0.072 0.119 0.076 
Portugal 2002 4 0.136 0.012 0.666 0.119 0.691 0.123 
Portugal 2005 5 0.144 0.061 0.611 0.147 0.611 0.127 
Portugal 2009 5 0.146 0.055 0.275 0.173 0.248 0.168 
Portugal 2011 5 0.140 0.041 0.292 0.180 0.306 0.165 
Portugal 2015 4 0.159 0.043 0.339 0.088 0.359 0.099 

Spain 1977 4 0.141 0.050 0.607 0.251 0.589 0.257 
Spain 1979 4 0.167 0.049 0.593 0.460 0.588 0.452 
Spain 1982 3 0.066 0.043 0.454 0.246 0.416 0.247 
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Spain 1986 3 0.045 0.019 0.354 0.222 0.381 0.222 
Spain 1989 4 0.078 0.020 0.531 0.179 0.582 0.192 
Spain 1993 2 0.099 0.065 0.523 0.229 0.574 0.199 
Spain 1996 2 0.088 0.063 0.932 0.371 0.943 0.383 
Spain 2000 2 0.146 0.080 0.633 0.204 0.671 0.209 
Spain 2004 2 0.005 0.005 0.247 0.127 0.249 0.152 
Spain 2008 2 0.044 0.032 0.137 0.103 0.175 0.103 
Spain 2011 3 0.127 0.052 0.640 0.243 0.626 0.233 
Spain 2015 4 0.056 0.044 0.385 0.241 0.403 0.256 

Table 2. Tests of assumptions A1, A3, and A4 

As Table 2 indicates, assumption A1 is quite well satisfied for most elections. Assumptions 
A3 and A4 look much worse, though it is important to note that significant violations occur 
only for individual parties. It is of course possible to devise a correction for the model that 
would account for correlations between 𝑝𝑖𝑘 and 𝑣𝑘 / 𝑠𝑘, but they would compromise the 
formula’s predictive function, since application of such corrections would require information 
that cannot be inferred from typical poll reports or preliminary aggregate results (such as the 
𝑉𝐴3,𝑖 and 𝑉𝐴4,𝑖 correlation coefficients). 

 

Is a violation of assumptions A3 and A4 fatal for the accuracy of the approximation formula 
itself? This question can be answered by empirically testing the correctness of formula (0.1) 
itself. For each country, we have compared empirical seat allocation with the results yielded 
by the approximation formula (with regional correction if necessary). For further comparison, 
we have also included the results obtained by “naïve proportional” seat allocation, i.e., by 
allocating to each party exactly 𝑝𝑖 ∙ 𝑠 seats, without accounting for rounding effects, district 
size variations, and bias in favor of larger parties. Table 3 sets forth the results for the most 
recent elections in the six test countries. 

election s c n11 party12 pi si 
formula 

allocation 
naïve 

proportionality 
seats error seats error 

Croatia 
2015 143 11 5 

DK 38.7% 59 58.69 -0.31 53.39 -5.61 
HR 37.6% 56 56.81 0.81 51.83 -4.17 

MOST 15.3% 19 19.84 0.84 21.08 2.08 
KRS 3.7% 2 0.69 -1.31 5.15 3.15 
HB 4.8% 1 2.38 1.38 6.56 5.56 
IDS 2.0% 3 2.87 -0.13 2.81 -0.19 

HDSSB 1.6% 2 1.72 -0.28 2.19 0.19 

Czech 
Republic 

2013 

200 14 7 

CSSD 23.4% 50 51.27 1.27 46.81 -3.19 
ANO 2011 21.3% 47 46.14 -0.86 42.68 -4.32 

KSCM 17.1% 33 35.47 2.47 34.11 1.11 
TOP 09 13.7% 26 27.18 1.18 27.45 1.45 

ODS 8.8% 16 15.02 -0.98 17.68 1.68 
UPD 7.9% 14 12.62 -1.38 15.76 1.76 

KDU-CSL 7.8% 14 12.31 -1.69 15.51 1.51 

                                                 
11 Without regional parties. 
12 Regional parties are in shaded rows. 
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Finland 
2015 200 13 7 

Center 21.6% 49 47.28 -1.72 43.26 -5.74 
Nat’l Coal. 18.7% 37 39.89 2.89 37.32 0.32 
True Finns 18.1% 38 38.48 0.48 36.18 -1.82 

SDP 16.9% 34 35.59 1.59 33.86 -0.14 
Green League 8.7% 15 15.23 0.23 17.48 2.48 
Left Alliance 7.3% 12 11.70 -0.30 14.64 2.64 

SPP 5.0% 9 9.31 0.31 10.00 1.00 
Chr. Dems 3.6% 5 2.53 -2.47 7.26 2.26 

Nether-
lands 
2012 

150 1 11 

VVD 26.8% 41 41.22 0.22 40.25 -0.75 
PvdA 25.1% 38 38.49 0.49 37.61 -0.39 
PVV 10.2% 15 15.33 0.33 15.27 0.27 
SP 9.7% 15 14.66 -0.34 14.62 -0.38 

CDA 8.6% 13 12.85 -0.15 12.88 -0.12 
D66 8.1% 12 12.11 0.11 12.16 0.16 
CU 3.2% 5 4.41 -0.59 4.73 -0.27 
GL 2.4% 4 3.16 -0.84 3.53 -0.47 

SGP 2.1% 3 2.78 -0.22 3.16 0.16 
PvdD 2.0% 2 2.53 0.53 2.93 0.93 

50 PLUS 1.9% 2 2.46 0.46 2.85 0.85 

Poland 
2015 460 41 5 

PiS 45.2% 235 233.54 -1.46 207.75 -27.25 
PO 29.0% 138 142.35 4.35 133.18 -4.82 

Kukiz 15 10.6% 42 39.04 -2.96 48.69 6.69 
Nowoczesna 9.1% 28 30.89 2.89 42.02 14.02 

PSL 6.2% 16 14.19 -1.81 28.37 12.37 

Portugal 
2015 226 20 4 

PSD/CDS 43.0% 104 104.31 0.31 97.12 -6.88 
PSoc 36.3% 85 86.56 1.56 82.04 -2.96 

BlocEsq 11.5% 19 20.47 1.47 25.89 6.89 
PCP-PEV 9.3% 17 14.65 -2.35 20.95 3.95 

Spain 
2016 350 52 4 

PP 36.7% 137 132.61 -4.39 119.32 -17.68 
PSOE 25.3% 85 83.18 -1.82 82.14 -2.86 

Podemos 23.5% 71 75.49 4.49 76.35 5.35 
C's 14.5% 32 36.55 4.55 47.05 15.05 
ERC 2.9% 9 8.42 -0.58 9.51 0.51 

CDC (DL) 2.2% 8 5.96 -2.04 7.27 -0.73 
PNV 1.4% 5 4.84 -0.16 4.41 -0.59 

EH Bildu 0.9% 2 2.43 0.43 2.86 0.86 
CC 0.3% 1 0.52 -0.48 1.09 0.09 

Table 3. Comparison of predicted and empirical seat allocations in most recent parliamentary elections in six 
European countries (with regional corrections when necessary) 

It is immediately apparent that in all countries except Netherlands the proposed formula 
produces a much better approximation of the final result than the “naïve proportionality” 
approach (in Netherlands both formulas produce very small errors). Indeed, only in 7 cases 
out of 51 our margin of error exceeds 1% of the national seat total. This is despite quite 
significant deviations from assumptions A3 and A4. 

Six elections and forty parties is still a rather small sample to establish a claim to empirical 
validity. For this reason, we have repeated the test for all available elections from our six test 
countries. Due to paper length limitations, we do not present full results for each party. 
Instead, for each country we have computed a sum of the absolute values of errors: 
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𝑒𝑟𝑟 = � �𝑠𝑒𝑚𝑝𝑖
− 𝑠𝑖�

𝑖
 (2.5) 

where 𝑠𝑒𝑚𝑝𝑖
 is the number of seats awarded to the i-th party under the empirical allocation13. 

Table 4 sets for the values of the error measure for successive elections. 

country year s c n 14 
aggregate error 

absolute % of s 
Croatia 2000 146 11 4 3.10 2.1% 
Croatia 2003 144 11 7 8.20 5.7% 
Croatia 2007 145 11 6 5.03 3.5% 
Croatia 2011 143 11 6 9.37 6.6% 
Croatia 2015 143 11 5 5.06 3.5% 

Czech Republic 2002 200 14 4 3.98 2.0% 
Czech Republic 2006 200 14 5 6.28 3.1% 
Czech Republic 2010 200 14 5 3.62 1.8% 
Czech Republic 2013 200 14 7 9.83 4.9% 

Finland 2003 200 15 7 10.37 5.2% 
Finland 2007 200 15 8 13.46 6.7% 
Finland 2011 200 15 8 14.28 7.1% 
Finland 2015 200 13 8 9.99 5.0% 

Netherlands 1948 100 1 9 2.01 2.0% 
Netherlands 1952 100 1 9 1.46 1.5% 
Netherlands 1956 150 1 10 2.04 1.4% 
Netherlands 1959 150 1 11 2.22 1.5% 
Netherlands 1963 150 1 13 2.44 1.6% 
Netherlands 1967 150 1 14 3.57 2.4% 
Netherlands 1971 150 1 19 3.50 2.3% 
Netherlands 1972 150 1 16 3.20 2.1% 
Netherlands 1977 150 1 14 2.45 1.6% 
Netherlands 1981 150 1 13 2.67 1.8% 
Netherlands 1982 150 1 14 2.83 1.9% 
Netherlands 1986 150 1 12 2.46 1.6% 
Netherlands 1989 150 1 11 2.31 1.5% 
Netherlands 1994 150 1 13 3.08 2.1% 
Netherlands 1998 150 1 13 2.56 1.7% 
Netherlands 2002 150 1 11 2.46 1.6% 
Netherlands 2003 150 1 11 2.58 1.7% 
Netherlands 2006 150 1 11 3.02 2.0% 
Netherlands 2010 150 1 10 2.99 2.0% 
Netherlands 2012 150 1 11 4.29 2.9% 

Poland 2005 460 41 6 11.87 2.6% 
Poland 2007 460 41 4 12.30 2.7% 
Poland 2011 460 41 5 7.85 1.7% 
Poland 2015 460 41 5 13.47 2.9% 

                                                 
13 The aggregate error measure 𝑒𝑟𝑟 should not be mistaken with the number of misallocated seats, which is 
always equal to 𝑒𝑟𝑟

2
, since each misallocated seat generates a double error. As seats sum up to 𝑠, each seat gain to 

the i-th party under the formula (as compared to the empirical allocation) must be paired with a corresponding 
seat loss to the other parties. 
14 Without regional parties. 
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Portugal 1975 247 22 5 8.95 3.6% 
Portugal 1976 259 22 4 5.76 2.2% 
Portugal 1979 246 20 3 14.99 6.1% 
Portugal 1980 246 20 3 19.00 7.7% 
Portugal 1983 246 20 4 4.17 1.7% 
Portugal 1985 246 20 5 5.54 2.3% 
Portugal 1987 246 20 5 8.79 3.6% 
Portugal 1991 226 20 4 9.16 4.1% 
Portugal 1995 226 20 4 2.90 1.3% 
Portugal 1999 226 20 4 7.15 3.2% 
Portugal 2002 226 20 4 10.43 4.6% 
Portugal 2005 226 20 5 5.76 2.5% 
Portugal 2009 226 20 5 8.96 4.0% 
Portugal 2011 226 20 5 8.86 3.9% 
Portugal 2015 226 20 4 5.69 2.5% 

Spain 1977 350 52 4 37.80 10.8% 
Spain 1979 350 52 4 36.34 10.4% 
Spain 1982 350 52 3 22.11 6.3% 
Spain 1986 350 52 3 30.58 8.7% 
Spain 1989 350 52 4 18.25 5.2% 
Spain 1993 350 52 2 28.11 8.0% 
Spain 1996 350 52 2 30.97 8.8% 
Spain 2000 350 52 2 20.93 6.0% 
Spain 2004 350 52 2 10.92 3.1% 
Spain 2008 350 52 2 10.87 3.1% 
Spain 2011 350 52 3 22.64 6.5% 
Spain 2015 350 52 4 25.87 7.4% 
Spain 2016 350 52 4 18.94 5.4% 

Table 4. Aggregate errors for available elections 

This much larger sample of elections demonstrates quite well that formula (0.1) indeed works 
as expected and is robust against violations of its assumptions. Only in 2 out of 65 elections 
more than 5% seats have been misallocated. It is also interesting to note that errors for 
Netherlands, where there is only one district, and the errors generated by the transition from 
the single-district to the multi-district formula are therefore non-existent, are not much smaller 
than those for other countries. This suggests that the small number of districts, while 
eliminating some sources of error, introduces other (perhaps related to the fact that average 
remaining fractional parts of party vote shares are more likely to diverge from the theoretical 
expected value of ½, something that is highly unlikely in countries like Poland and Spain due 
to the law of large numbers). 

This robustness of the formula undoubtedly requires further investigation, which is beyond the 
scope of this paper. Nevertheless, our initial study of the subject suggests that under typical 
conditions encountered in real-life elections (unless the system is gerrymandered or otherwise 
deliberately skewed in favor of some type of parties), the errors introduced in different stages 
of approximation tend to largely cancel each other out, thereby making the overall error much 
smaller than initially expected. 
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Finally, we have created two density plots, illustrating distribution of absolute party errors 
(absolute differences between empirical and predicted seat allocations) and relative party 
errors (absolute party errors divided by national seat totals). 
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III. Political consequences 

Predicting nationwide seat allocation on the basis of party vote shares is practically useful, but 
from the development of the discipline point of view the utility of our formula lies primarily 
in its capability to explain the size of the Jefferson-d’Hondt bonus to the larger parties (and 
the corresponding loss of sets by the smaller parties). We will call it “integration bonus”, since 
it incentivizes integration of the party system by rewarding mergers of smaller parties. The 
bonus – deviation from proportionality – is nothing else than the number of seats received by 
the party in excess of pure proportionality, i.e. 

Δ𝑖 = 𝑝𝑖 ∙
𝑐𝑛
2
−
𝑐
2

 (3.1) 

where 𝑝𝑖 is the effective vote share of the i-th party, c is the number of districts, and n is the 
number of parties (from formula (0.1)). We will note that the system is neutral (i.e. Δ𝑖 = 0) 
only towards those parties for which 

𝑝𝑖 =
1
𝑛

 , (3.2) 

that is, the mean party vote share. Such parties receive exactly the number of seats 
corresponding to their vote shares. 

 

To test whether our formula for expected bonus succeeds in predicting the empirical bonus we 
have tested the two magnitudes for correlation. We have included data from four of our test 
countries from part II (eliminating those with regional parties, since their existence 
complicates the bonus mechanism – apart from the national bonus, in regionalized electoral 
systems there are also bonuses for regional winners). In addition, we have included data from 
Albanian elections of 2009 and 2013 to illustrate how the bonuses behave when the number of 
parties in the system is very small (most Albanian parties tend to aggregate themselves into 
two large party blocks, making the system behave – from the seat allocation point of view – 
just like a classic two party system, optionally with small third parties). 

Figure 1 illustrates how the empirical deviation of proportionality can be explained by the 
predicted deviation (our Δ𝑖). We have limited ourselves to the twenty-first century elections in 
an attempt to equalize the number of data points per country (otherwise, large number of data 
points for Portugal and Netherlands – on the order of 15-20 – would crowd out 4-5 elections 
per country from the Central and Eastern European states). 



~ 23 ~ 
 

 
 

 
Figure 1. Relationship between empirical and predicted deviations from proportionality 
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The correlation between the two variables is quite high (at least for social sciences), especially 
when compared with a model that explains the bonus solely in terms of effective vote shares: 

 
Figure 2. Relationship between empirical deviations from proportionality and party vote shares 

Although party vote shares are positively correlated with empirical deviations of 
proportionality and explain some part thereof, only after the remaining factors – district and 
party counts – are included, the integration bonus generated by the Jefferson-d’Hondt method 
is explained in full. 

 

Thanks to formula (3.1) providing a good approximation of the integration bonus, we can 
analyze how does it depend on other parameters of the electoral system. There are four of 
them: the number of seats, the number of districts, the number of relevant parties and each 
party’s (effective) vote share. The most stable ones are the number of seats (which is often 
constitutionally fixed) and the number of districts. A change in either is commonly considered 
to be a major change in the electoral rules (Pilet et al. 2016). For assessing the magnitude of 
the integration bonus, however, it is only necessary to know the average number of seats per 
district. For the five countries considered in our model, it varies from 10.5 in Portugal, 
through 11.2 in Poland, 11.7 in Albania, and 14.3 in the Czech Republic, to 150 in 
Netherlands (where there is only one district). The relationship thereof with the magnitude of 
the integration bonus is one of inverse proportionality – the larger the average district, the 
smaller the potential bonus. 
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The number of relevant parties is a more variable parameter, though, at least in stable 
democracies with institutionalized party systems, it rarely varies drastically. Still, not one of 
our sample of five countries maintained a constant number relevant parties throughout all 
elections since 2000. For our three model countries – Czech Republic, Poland, and Portugal – 
it generally varied between 4 and 7. Albania was an extreme case, with only 2 parties in 2009 
and 2 in 2013. Netherlands was the other extreme, with 10 to 11 parties running in each post-
2000 election. 

Finally, the last parameter influencing the magnitude of the integration bonus is party size (its 
effective share of the total number of votes). While variability of this parameter is related to 
the number of parties (Taagepera 2007), the relationship is far from trivial (as it is in the case 
of the expected party size). Similarly sized parties occur in party systems with very different 
numbers of relevant parties. Yet the party size is ultimately the key determinant of the size of 
the integration bonus, since it distinguishes the winners and losers of the Jefferson-d’Hondt 
method, and thereby affects the strength of the incentive to integrate or disintegrate according 
to the calculation of potential electoral gains. 

Importance of the first two parameters – average district size and the number of parties – can 
be best demonstrated by running a simulation with a fixed-size party. Figures 3 and 4 
illustrate the size of the bonus for two parties – one with 40% share in the total number of 
votes and one with 10% share – as it varies depending on the number of parties (from 3 to 8). 
Distinct data series are drawn for each country (representing the effects of different average 
district sizes). Model party sizes (10% and 40%) have not been chosen randomly – for the 
number of parties in the [3, 8] range a party with 40% of all votes is always guaranteed to 
have above-average vote share, while a party with 10% of all votes is always guaranteed to 
have less than average number. 

 
Figure 3. Integration bonus for a party with effective vote share 40% 
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Figure 4. Integration bonus for a party with effective vote share 10% 

For the party with effective vote share 40% the integration bonus depends primarily on the 
product of the number of parties and the average district size. If the average district is very 
large (as in Netherlands) or the number of parties is very small (as in Albania), the integration 
bonus will be negligible. But in systems with 10- to 15-seat districts and with 4 or more 
parties, a party with 40% of all votes can expect a gain of at least several percent. It is 
particularly interesting to note the monotonically increasing relationship between the number 
of parties and the integration bonus. It creates an interesting feedback mechanism: the 
incentive for integration is greater where it is most needed. 

For small parties (vote shares on the order of 10%) the mechanism is less intuitive. As the 
integration bonus for large parties increases, the losses are distributed across a larger number 
of small parties, thereby making each small party lose less seats than in the case of a system 
with only few parties. From a small party’s point of view, a disintegrated party system is 
therefore better than an integrated one. 

 

Conclusions 

The proposed model has three primary applications. First, as noted above, it provides a 
reasonably accurate method for estimating nationwide seat allocation on the basis of 
aggregate data, such as opinion polls or exit polls. Second, it is useful for calculating political 
strategies (e.g., for estimating consolidation benefits or secession losses). Third, it provides a 
simple method for estimating effects of changes in electoral system parameters (particularly 
the number of seats and the number of districts) on particular parties, as well as on general 
systemic incentives. 
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